) @

REPORT NN~~~ ITATION PAGE Fonagpoved 6 N

P —
[N 1 2 Ol PO 18600NES. INCILTING the IMe for ravewIng NBINUCIONS, S4ArChING exiNg JEla SOUTCEs QAINeNNg and Martaning the dsta
+ buroen estimate or any other aspedct of this codection of nformation, INCGING SUQYESIIONS for reCUCING T burden, to Washmngon
rson Caves Highway, Sufte 1204 Arkngion, VA 22202-4302, and 10 the Ofice of Informaon and Reguiatory Aftars. Office of

z ~-A24 G
%AWWW i e e

Final: 31 Jul 1991 to 01 Jun 1993

2 Ti..c AND SUBTITLE 5. FUNDING NUMBERS
Ada Compiler Validation Summary Report:InterACT Corporation, InterACT

Corporation, InterACT Ada Mips Cross-Compiler System, Rel 2.0, MicroVAX 3100
Cluster (Host) to Lockheed Sanders STAR MVP R3000 (Target)91070551.11192

S AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD

USA

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST90ACT520_2_1.11

Bldg. 255, Rm A266

Gaithersburg, MD 20899 USA
5. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Ada Joint Program Office REPORT NUMBER

United States Depantment of Defense
Pentagon, RM 3E114
Washington, D.C. 20301-3081

T1 SUPPLEMENTARY NOTES

2a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

InterACT Corporation, InterACT Corporation, InterACT Ada Mips Cross-Compiler System, Release 2.0, Gaithergsburg,
MicroVAX 3100 Cluster (Host) to Lockheed Sanders STAR MVP R3000 (Target)ACVC 1,11.

@"& !f”

.--~r

At ?...
SEP 191991,

\: 91-11068
L \\\

14 SUBJECT TERMS " T 115 NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability. Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE COOE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 — Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Sid. 239-128

91 ~ 10 220

AVF Control Number:
DATE COMPLETED
BEFORE ON-SITE: 1991-06-07

AFTER ON-SITE: 1991-07-05
REVISIONS: 1991-07-31

NIST90ACT520 2 1.11

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910705S1.11192
InterACT Corporation
InterACT Ada Mips Cross-Compiler System, Release 2.0
MicroVAX 3100 Cluster => Lockheed Sanders STAR MVP
R3000/R3010 board
(Bare Machine)

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

o -
i 4

Accesion For

NTIS CRA& {} 1
DIl TAR - '
i

U.aasounced o !
4
+

Jacuteaen

AVF Control Number: NIST90ACTS20_2 1.11
Certificate Information
The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 1991-07-05.

Compiler Name and Version: InterACT Ada Mips Cross-Compiler
System, Release 2.0

Host Computer System: MicroVAX 3100 Cluster running under
VAX/VMS, Version 5.2

Target Computer System: Lockheed Sanders STAR MVP
R3000/R3010 board (Bare Machine)

See section 3.1 for any additional information about the testing
environment. |

As a result of this validation effort, Validation Certificate
91070581.11192 1is awarded to InterACT Corporation. This
certificate expires on 01 March 1993.

This report has been reviewed and is approved.

%W

Ada Validatio Ada Vallda Facility
Dr. David K. Jeff n Mr. L. Arn Johnson
Chief, Information Systems Manager, So tware Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

;;}7/9" E?Z:’

ation Organization /‘ Ada Joint Program Office
omputer & Software Dr. John Solomond
f?? Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria va 22311 Washington DC 20301

APPENDIX A

Declaration of Conformance

Customer: InterACT Corporation

Ada Validation Facility: National Institute of Standards & Technology
ACVC Version: 1.11

Certificate Awardee InterACT Corporation

Ada Impiementatioa .

Ada Compiler Name: InterACT Ada Mips Cross-Compiler System
Version: 2.0

Hcst Computer System: MicroVAX 3100 Cluster /VMS 5.2

Target Computer System: Lockheed Sanders STAR MVP R3000/R3010 Board

(bare machine)

Customer’s Declaration

I, the undersigned, representing InterACT declare that InterACT has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation(s) listed in this declaration.

Signature Date

A-l

TABLE OF CONTENTS

CHAPTER 1 « ¢« + « .+ . .
INTRODUCTION « ¢« o o o ¢ o o « .
1.1 USE OF THIS VALIDATION SUMMARY
1.2 REFERENCES
1.3 ACVC TEST CLASSES
1.4 DEFINITION OF TERMS . . .
CHAPTER 2 . . v ¢« v ¢« o ¢ o o o o s o o

IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS .
2.2 INAPPLICABLE TESTS
2.3 TEST MODIFICATIONS

CHAPTER 3 . . . ¢ o « « « & .
PROCESSING INFORMATION . . .

3.1 TESTING ENVIRONMENT . . .
3.2 UMMARY OF TEST RESULTS .

3.3 TEST EXECUTION

APPENDIX A . . . s e e e e

MACRO PARAMETERS
APPENDIX B . . . « « ¢ « o « + .

COMPILATION SYSTEM OPTIONS .

LINKER OPTIONS
APPENDIX C

APPENDIX F OF THE Ada STANDARD . . .

e * o o e

.

REPORT

N I SN SN S
t
WA s

NN
t
N

WWwWwWwww
[
N N

www >
[1 i
e

[
N

Q0
e

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. 1In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation ap»ly only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port koyal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Orxrganization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-~1987.

1-1

[(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE messade indicating the

result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK_FILE are used
for this purpocse. The package REPORT also provides a set of

identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
vioclation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. 1In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UGS89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada

Validation implementations, Validation consisting of the
Capability- test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.
Ada An Ada compiler with its host computer system and
Implementation its target computer system.
Ada Joint The part of the certification body which provides
Program policy and guidance for the Ada certification Office
(AJPO) systen.
Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.
Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification systen.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.

Implementation
Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for

the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including

1-3

Conformity

Customer

Declaratiocn of

Conformance

Host Computer

System

Inapplicable

test

Is0

LRM

Operating
System

Target
Computer
System

Validated Ada

Compiler

Validated Ada
Implementation

arithmetic coperations and logic operations:; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process or service of
all requirements specified.

An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

A formal statement from a customer assuring that
conformity is realized or attainable on the Ada
implementaticn for which validation status is
realized.

A computer system where Ada source programs are
transformed into executable form.

A test that contains one or more test objectives
found to be irrelevant for the given Ada
implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual,
published as ANSI/MIL-STD-1815A-1983 and ISO
8652-1987. Citatinns from the LRM take the form
"<section>.<subsection>:<paragraph>."

Software that controls the execution of programs
and that provides services such as resource
allocation, scheduling, input/output ccntrol,
and data management. Usually, operatiny systems
are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada
programs are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated
successfully either by AVF testing or by
registration [Pro90].

1-4

vValidation

Withdrawn
test

The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIZES

2.1 WITHDRAWN TESTS

Scme tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 94 tests had been
withdrawn by the Ada Validaticn Organizaticn (AVQO) at the time of
validation testing. The raticnale for withdrawing each test is
available frcm either the AVO or the AVF. The publicaticn date for
this list of withdrawn tests 1is 91-05-03.

£28005C 8328006C C34006D C355081I C35508J C353508M
C35308N C33702A C357028 B41308B C43004A C45114a
Ci5346A C43612A C45612B ci5612cC C45651A C46022A
B43008A 349008B A74006A C74308A B83022B B83022H
Bg83025B B33025D B830263B C33026A C83041A B8500Q1L
C86001lF C24021A C371168A C28003B BA2011lA CB7001A
c370013 C37004A CCl223A BCl226A CCl2268 BC3009B
BD13028 3D1306A AD1B0O8A BD2A02A CD2A21E . CD2A23E
CD2ZA32A CDZA41A CD2A41E C0ZA87A CD2B1sC BD3006A
BD4008A CD4022A CD4022D CD40248B CD4024C CD4024D
C24031Aa CD4051D CD8111A CD7004¢C 27005D CD70G3E
AD7006A CD7006C AD7201A AD7201E CD7204B AD7206A
BC8QQG2A BD8004C CcDoeoosa CDS00S5SB CDA201E CE2107T
CE2117A CEZ2117B CE2119B CE22058 CE2405A CE3111icC
CE2llseaAa CE3113A CE34113 CE3412B CE3607B CE3607C
CE3607D CcZ3812Aa CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test 1s inapplicable if it contains test cbjectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO kncwn as Ada Commentaries and ccmmonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C357C6L..Y (14 tests)
C35708L..Y¥ (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..Z (15 tests)

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)
C24113I..K (3 TESTS) USE A LINE LENGTH IN THE INPUT FILE WHICH

EXCEEDS 126 CHARACTERS.

The following 21 tests check for the predefined type SHORT INTEGER:
for this implementation, there is no such type:

C35404B B3610sC C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B0O7B B55B0SD B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONG INTEGER:
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B0SC B86001W c86006C CD7101F
C35404D. (C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,

LONG_INTEGER, or SHORT_INTEGER:; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C36006H check for the predefined
type SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE _OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type:; for this implementation, MACHINE OVERFLOWS is TRUE.

C4A013B contains a static universal real expression that exceeds

the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

2-2

B86001Y uses the name Jf a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F <check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled:
this implementation requires that generic bodies be located in the
same file or precede the instantiation.

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type:; this implementation does not
support such sizes.

CD2A84A, CLD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types:; this
implementation does not support such sizes.

BD8001A, BD8003A,
code insertions:
MACHINT CODE.

and AD8011lA use machine
provides no package

BD8004A..B (2 tests),
this implementation

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USE_ERROR. (See section 2.3.)

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does nnt support external

files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..1I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403Aa CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J3..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119aA EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302Aa CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)

CE3403E..F (2) CE3404B..D (3) CE3405a EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CL3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)
2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 17 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B33301B BS5S5A01A B83EO1C BS83EO1D B83EO1lE BA100lA BAl1101B BC1109A
BC1109C BC1l109D

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated pr.or to package Report's body, and thus the
packages' calls to function REPORT.IDENT_ INT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete=--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE_ERROR is raised on the attempt
to create an external file. This 1is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this wvalidation effort |is
described by the information given in the initial pages of this
report with additional information as follows:

In addition to the host computer system and the target computer
system, there are execution controllers which are a pair of
cooperating processes. The Remote Process Administrator (RPA) runs
under VAX/VMS, and is a translator/downloader. The Remote Process
Monitor (RPM) runs on the target Mips machine (the Lockheed Sanders
STAR MVP R3000/R3010 board (Bare Machine). The two processes
communicate via a RS232 link.

For technical information about this Ada implementation, contact:

Ms. Gail Ward
InterACT Corporation

417 5th Avenue _
New York, New York, U.S.A. 10016

For sales information about this Ada implementation, contact:

Mr. Rich Colucci
InterACT Corporation
417 5th Avenue
New York, New York, U.S.A. 10016

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or

inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro9o0j].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various

3-1

categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -- if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3527
b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 549
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point
Precision Tests 0
f) Total Number of Inapplicable Tests 549 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After an Ada program is compiled under VAX/VMS, the InterACT
Embedded Systems Linker is run under VAX/VMS and produces a Mips
load module. This module is in InterACT's proprietary load format.

The execution controllers are a pair of cooperating processes. The
Remote Process Administrator (RPA) runs under VAX/VMS, and is a
translator/downloader. The Remote Process Monitor (RPM) runs on
the target Mips machine (the Lockheed Sanders STAR MVP R3000/R3010
board (Bare Machine). The two processes communicate via a RS232
link. The RPM (running on the Mips target computer) is constantly
executing waiting for requests from the RPA process on the host
conputer.

The RPA is invoked with a Mips load module as input. The RPA
translates the load module to one or more Unix style (a.out) format
files. The RPA then instructs the RPM to download the file(s) via
a pair of Ethernet server/client processes.

The RPA then directs the RPM to start the execution of the Ada
program. The RPM starts the execution of the Ada program by
branching to the program's starting address.

As the Ada program executes, it calls on the RPM to perform
input/output. The RPM converses with the RPA (executing on the

3-2

host computer), conveying input/output between the Ada program and
the RPA which logs the output data in a disk file under VAX/VMS.

When the Ada program finishes its execution, it gives control back
to the RPM. The RPA then gives control back to the user under
VAX/VMS.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The exsz.utable images were transferred to the target
computer system by the communications link described above, and
run. The executable images were transferred to the target computer
system by the communications link described above, and run. The
results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the ©processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

For all tests the following explicit option was invoked:
/library=<library name>

In addition to the above, the following explicit option was invoked
for the B tests and E tests:

/list
Test output, compiler and linker 1listings, and job 1logs were

captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in {UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which 1is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" r:epresents the maximum input-line
length.

Macro Parameter Macro Value

$SMAX_IN_LEN 126 =-- Value of V

$BIG_ID1 | (1..V=1 => 'A', V => '1")

$BIG_ID2 (1..V=1 => 'A', V => 121")

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V=1-V/2 => 'A"')
SBIG_ID4 (1..V/2 => 'A') & '4' & (1..V-1=-V/2 => 'A')
$BIG_INT_ LIT (1..V=-3 => '0') & “298"

$BIG_REAL LIT (1..V=5 => '0') & "690.0"

$BIG_STRING1 thr & (1..V/2 => 'A') & '

$BIG_STRING2 ’ thr g (1..V=-1=-V/2 => 'A') & '1' & 'w!
$BLANKS (1..V=20 => ' ')

$MAX_ LEN INT BASED LITERAL
"2:M & (1..V=5 => '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAX_ STRING_LITERAL '"' & (1..V=2 => 'A') & '"!

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value
SACC_SIZE 32

$SALIGNMENT 2

$COUNT_LAST 2_147_483_647
$DEFAULT_MEM_SIZE 4%1024%1024*%1024

$DEFAULT_STOR_UNIT 8

SDEFAULT_SYS_NAME MIPS

$DELTA_DOC 1.0/2.0%* (SYSTEM.MAX MANTISSA)
SENTRY_ADDRESS SYSTEM.MODx

SENTRY_ADDRESS1 SYSTEM.TLBL

SENTRY_ADDRESS?2 SYSTEM.TLBS

SFIELD LAST 35

$FILE_TERMINATOR "

$FIXED NAME NO_SUCH_FIXED_TYPE

$FLOAT NAME NO_SUCH_FLOAT_TYPE
$FORM_STRING o

$FORM_STRING2 "CANNOT RESTRICT FILE CAPACITY"
$GREATER_THAN_DURATION 131_071.0
$SGREATER_THAN_DURATION_BASE_LAST 131 _072.0
$SGREATER_THAN_FLOAT BASE_LAST 2#1.0#E129

SGREATER_THAN_FLOAT SAFE_LARGE
2#0.1111111111111111111114E126

$GREATER_THAN_SHORT_ FLOAT SAFE_LARGE 0.0

SHIGH_PRIORITY 255

$ILLEGAL_EXTERNAL FILE NAME1
$ILLEGAL_EXTERNAL FILE NAME2
$INAPPROPRIATE LINE_LENGTH

$INAPPROPRIATE PAGE_LENGTH

ILLEGAL FILE NAME 1

ILLEGAL FILE NAME 2

1l

-1

$INCLUDE_PRAGMA1
$INCLUDE_PRAGMA2
$INTEGER_FIRST
$INTEGER LAST
$INTEGER LAST_ PLUS_1
SINTERFACE LANGUAGE

$LESS_THAN DURATION

PRAGMA INCLUDE("A28006D1.TST")

PRAGMA INCLUDE("B28006F1.TST")
~2147483648

2147483647

2147483648

ASSEMBLY

-131_072.0

$LESS_THAN_DURATION BASE_FIRST -131 073.0

$LINE_TERMINATOR

SLOW_PRIORITY

SMACHINE_CODE_STATEMENT

SMACHINE_CODE_TYPE
SMANTISSA_DOC

$MAX DIGITS

SMAX_INT

$MAX INT_PLUS_ 1
SMIN_INT

$NAME

$NAME_LIST

SNAME _SPECIFICATION1
SNAME _SPECIFICATION2

SNAME _SPECIFICATION3

0

NULL;
NO_SUCH_TYPE
31

15
2147483647
2147483648
-2147483648
NO_SUCH_INTEGER TYPE
MIPS
NAME_SPEC_1
NAME_SPEC_2
NAME_SPEC_3

A~3

SNEG_BASED_INT
SNEW_MEM_SIZE
$SNEW_STOR UNIT
$SNEW_SYS_NAME
$PAGE_TERMINATOR
$SRECORD_DEFINITION
$RECORD_NAME

$TASK SIZE
$TASK_STORAGE_SIZE
$TICK

$VARIABLE_ ADDRESS
$VARIABLE ADDRESS1
$VARIABLE ADDRESS2

$YOUR_PRAGMA

164FFFFFFFE#
4%1024%1024%1024

8

MIPS

'

NEW_INTEGER;
NO_SUCH_MACHINE_ CODE_TYPE
32

1024

2.0%*(~14)
16#800E0000#=-2%%32
16#800E8000#=2%%32
16#801000004-2%%32

N A

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

Chapter 4
The Ada Compiler

The Ada Compiler translates Ada source code into Mips R2000/R3000 object code.

Diagnostic messages are produced if any errors in the source code are detected. Warning messages are also
produced when appropriate.

Compile, cross-reference, and generated assembly code listings are available upon user request.

The compiler uses a program library during the compilation. An internal representation of the compilation,
which includes any dependendcies on units already in the program library, is stored in the program bibrary as a
result of a successful compilation.

On a successful compilation, the compiler generates assembly code, invokes the Mips Assembler to translate
this assembly code into object code, and thea stores the object code in the program library. (Optionally, the

generated assembly code may also be stored in the Library.) The invocation of the Assemblier is completely
transpareat to the user.

4.1. The Invocation Command

The Ada Compiler is invoked by submitting the following VAX/VMS command:

$ adamips{qualifier} source-file-spec

4.1.1. Parameters and Qualifiers

Default values exist for all qualifiers as indicated below. All qualifier names may be abbreviated (characters
omitted from the right) as long as no ambiguity arises.

source-file-spec
This parameter specifies the file containing the source text to be compiled. Any valid VAX/VMS filename may

be used. If the file type is omitted from the specification, file type ada is assumed by default. If this parameter
is omitted, the user will be prompted for it The format of the source text is described in Section 4.2

42 The Ada Compiler

/nolist (default)

The user may request a source listing by means of the qualifier /list. The source listing is written to the list file.
Section 432 contains a description of the source listing.

If /nolist is active, no source listing is produced, regardless of any LIST pragmas in the program or any diagnos-
tic messages produced.

In addition, the /list qualifier provides geaerated assembly listings for each compilation unit in the source file.
Section 43.6 contains a description of the generated assembily listing,

/xref
/uoxref (default)

A cross-reference listing can be requested by the user by means of this qualifier. If /xref is active and no severe
or fatal errors are found during the compilation, the cross-reference listing is written to the list file. The cross-
reference listing is described in Section 43.4.

/library =file-spec
[library=adamips_library (default)

This qualifier specifies the current sublibrary and thereby also specifies the current program library which con-
sists of the current sublibrary through the root sublibrary (see Chapter 2). If the qualifier is omitted, the subli-
brary designated by the logical name adamips_library is used as the current sublibrary.

Section 4.4 describes how the Ada compiler uses the current sublibrary.

/coafiguration_file =file-spec
/coafiguration_(lle =adamips_conflg (default)

Ttis qualifier specifies the configuration file to be used by the compiler in the curreat compilation.

If the qualifier is omitted, the configuration file designated by the logical name adamips_config is used by
default. Section 4.1.4 contains a description of the configuration file.

/save_source (defawit)
/nosave_source

This qualifier specifies whether the source text of the compilation unit is stored in the program library. In case
that the source text file contains several compilation units the source text for cach compilation unit is stored in
the program library. The source texts stored in the program library can be extracted using the Ada PLU type
command (see Chapter 3).

Specifying /oosave_source will prevent automatic recompilation by the Ada Recompiler, and is hence not
recommended.

The Ada Compiler 43

[keep_assembly
/nokeep_assembly (default)

When this qualifier is given, the compiler will store the generated assembly source code in the program library,
for each compilation unit being compiled. By default this is not done. Notc that while the assembly code is
stored in the library in a compressed form, it nevertheless takes up a large amount of library space relatrve to
the other information stored in the library for a program unit.

This qualifier does not affect the production of generated assembly listings.

[check (default)
/nocheck{ = (check_kind,...)}

check_kind :: = index | access | discriminant | length | range |
division | overflow | elaboration | storage | all

When this qualifier is active (which is the default), all run time checks will be generated by the compiler.

When /nocheck is specified, the checks corresponding to the particular check kinds specified will be omined.
These kinds correspond to the identifiers defined for pragma SUPPRESS [A4da RM 11.7]. The default kind for
/oocheck ts all; that is, just specifying /nocheck results in all checks being suppressed.

Suppression of checks is done in the same manner as for pragma SUPPRESS (see Section F.2).

/debug(=full_optimizations | limit_optimizations]
/nodebug (default)

When this qualifier is given, the compiler will generate symbolic debug information for each compilation unit in
the source file and store the information in the program library. By default this is not done.

This symbolic debug information is used by the InterACT Symbolic Debugging System.

If /debug=full_optimizations is specified (the default if /debug is active), the compiler will generate code with
all optimizations enabled, even though this may result in some unreliable symbolic debug information being
produced. If /debug=limit_optimizatioas is specified, the compiler will suppress those optimizations which
might result in unreliable symbolic debug information. These optimizations include code motion across Ada
statement boundaries, and not storing the values of Ada variables to memory across statement boundanes.
Users may also wish to spealfy this option to make the generated machine code more understandable relative to
the Ada source code.

/nofeoptimize

A small portion of the optimizing capability of the compiler places capacity limits on the source program (e.g.,
pumber of variables in a compilation unit) that are more restrictive than those documented in Section F.13. If a
compile produces an error message indicating that one of these limits has been reached, for example

eve 15625-0: Optimizer capecity exceeded. Too meryy names in s besic block.

then use of this /mofeoptimize qualifier will bypass this particular optimizing capability and allow the

&4 The Ada Compiler

compilation to finish normally.

IMPORTANT NOTE: Do not use this qualifier for any other reason. Do not attempt to use it in its positive
form (/feoptimize), cither with or without any of its keyword parameters. The /feoptimize qualificr as defined
in the delivered command definition file is preset to produce the most effective optimization possible; any other
usc of it may produce cither non-optimal or incorrect generated code. Similarly, do not use any other qualifiers
defined in the delivered command definition file that are not documented in this manual. Such qualifiers are
intended only for compiler maintenance purposes.

/progress
/noprogress (default)

Whean this qualifier is given, the compiler will write a message to sysSoutput as each pass of the compiler starts
to run. This information is not provided by defauit.

/gisa

Use of this qualifier directs the compiler to accent an extended set of address clauses for interrupt eatries,
corresponding to additional interrupts found in the GISA architecture (see Sections F.S and F.8).

Examples of qualifier usage

$ adamips npavigation_coanstants
$ adamips/list/ref event_scheduler

$ adamips/prog/lib=test_versionsalb sysSuser:[source]altitudes b

4.12. The List File

The name of the list file is identical to the name of the source file except that it has the file type lis. The file is
located in the current default directory. If any such file exists prior to the compilation, the newest version of the
file is deleted. If the user requests any listings by specifying the qualifiers /list or /xref, a new list file is created.

The list file is a text file and its contents are described in Section 4.3.

4.13. The Diagnostic File

The name of the diagnostic file is identical to the name of the source file except that it has the file type err. It is
located in the current default directory. If any such file exists prior to the compilation, the newest version of the
file is deleted. If any diagnostic messages are produced during the compilation, a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line showing the
aumber of the line in the source text causing the message, and a blank line. There is no pagination and there
arc 0o headings. The file may be used by an interactive editor to show the diagnostic messages together with
the erroneous source text (sce Appendix A). The diagnostic messages are described in Section 43.5.

The Ada Compiler 45

4.1.4. The Coufliguration File

Certain functional characteristics of the compiler may be modified by the user. These characteristics are passed
to the compiler by means of a configuration file, which is a text file. The conteats of the configuration file must
be an Ada positional aggregate, written on one line, of the anonymous type configuration _record, which is
described below. The configuration file is not accepted by the compiler in the following cases:

e the syntax does not conform with the syntax for a positional Ada aggregate of type
configuration_record,

e avalue is outside the ranges specified below;

e avalue is not specified as a literal;

e LINES_PER_PAGE is not greater than TOP_MARGIN + BOTTOM_MARGIN;
e the aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is issued and the compilation is ter-
minated.

The definition of this anonymous type is

type OUTFORMATTING is
record
LINES_PER_PAGE : INTEGER range 30..100;
-see Section 43.1
TOP_MARGIN : INTEGER range 4.. 90;
—see Section 43.1
BOTTOM_MARGIN : INTEGER range 0..90;
—see Section 43.1
OUT_LINELENGTH : INTEGER range 80..132;
—-see Section 43.1

SUPPRESS_ERRORNO : BOOLEAN;
-see Sectio 43.5.1
end record:

type INPUT_FORMATS is
(ASCI);
—sce Section 4.2

type INFORMATTING is
record
INPUT_FORMAT : INPUT_FORMATS;
—-see Section 4.2
INPUT_LINELENGTH : INTEGER range 70..127;
—see Section 4.2
end record;

46 The Ada Compiler

type configuration_record is
record .
IN_FORMAT : INFORMATTING;
OUT_FORMAT : OUTFORMATTING;
ERROR_LIMIT : INTEGER,;
-see Section 435
end record;

The Compiler System is delivered with a configuration file with the following content:
((ASCHL, 126), (48, S, 3, 100, FALSE), 200)

The name of this configuration file is passed to the compiler through the /configuration_flle qualifier.
The OUTFORMATTING components have the following meaning:

e LINES_PER_PAGE: Specifies the maximum aumber of lines written oa cach page (including top and
bottom margin).

e TOP_MARGIN: Specifies the number of lines on top of each page used for a standard heading and
blank lines. The heading is placed in the middle lines of the top margin.

e BOTTOM_MARGIN: Specifies the minimum number of lines left blank in the bottom of the page.
The number of lines available for the listing of the program is LINES_PER_PAGE - TOP_MARGIN
- BOTTOM_MARGIN.

e OUT_LINELENGTH: Specifies the maximum number of characters written on cach line. Lines
longcr than OUT_LINELENGTH are separated into two lines.

e SUPPRESS_ERRORNO: Specifies the format of error messages, see Section 435.1.

4.15. The Generated Assembly List File

When generated assembly list files are produced, there are two such files for each compilation unit in the
source file. Generated assembly list files have a file type of s and L, and a file name of the compilation unit
name suffixed with a $s if the compilation unit is a specification, or $b if the compilation unit is a body. All files
are located in the current default directory. Unlike the source list file, existing generated assembly list files are
not deleted upon recompilation.

Generated assembly list files are text files and their contents are described in Section 4.3.6.

The Ada Compiler 47

42. The Source Text

The user submits one source text file in each compilation. The source text may coasist of one or more compila-
tion units [4da RM 10.1].

On VAX/VMS the format of the source text specified in the configuration file (see Section 4.1.4) must be
ASCII. This format requires that the source text is a sequence of ISO characters [ISO standard 646], where
cach line is terminated by one of the following termination sequeaces (CR means carriage return, VT means
vertical tabulation, LF means line feed, and FF means form feed):

e ascqueace of one or more CRs, where the sequence is ncither immediately preceded nor immediately
followed by any of the characters VT, LF, or FF;

e any of the characters VT, LF, or FF, immediately preceded and followed by a sequence of zero or
more CRs.

In general, ISO control characters are not permitted in the source text with the following exceptions:

e the horizontal tabulation character (HT) may be used as a separator between lexical units;

e LF, VT, FF, and CR may be used to terminate lines, as described above.
The maximum number of characters in an input line is determined by the contents of the configuration file (see
Section 4.1.4). The coutrol characters CR, VT, LF, and FF are pot considered part of the line. Lines containing
more than the maximum number of characters are truncated and an error message is issued.
43. Compller Output

The compiler may produce output in the list file, the generated assembly list file(s), the diagnostic file, and on
sysSoutput. It also updates the program library if the compilation is successful (see Section 4.4).

The compiler may produce the following text output:

1. A listing of the source text with embedded diagnostic messages is written to the list file, if the qualifier
[list is active.

2 A compilation summary is written to the list file, if /list is active.

3. A cross-reference listing is written to the list file, if /xref is active and no severe or fatal errors have
been detected during the compilation

4. A generated assembly listing of the compilation units within the source file is written to the generated
assembly list file(s) if the qualifier /list is active, and if no errors have been detected during the com-
pilation.

5. If there are any diagnostic messages, a diagnostic file containing the messages is written.

6. Diagnostic messages other than warnings are written to sys$output.

48 The Ada Compiler

43.1. Format of the List File

The list file may include one or more of the following parts: a source listing, a cross-reference listing, and a
compilation summary.

The parts of the list file are separated by page ejects. The contents of each part are described in the following
sections.

The format of the output to the list file is coatrolled by the configuration file (see Section 4.1.4).

432. Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and each line is sup-
plied with a line aumber.

The number of lines output in the source listing is governed by the following:
e parts of the listing can be suppressed by the use of LIST pragmas;

e a line containing a construct that caused a diagnostic message to be produced is printed even if it
occurs at a point where listing has been suppressed by a LIST pragma.

An example of a source listing is shown in Chapter 10.

433. Compilation Summary

At the end of a compilation the compiler produces a summary that is output to the list file if the /list qualifier
is active.

The summary contains information about:
e the type and name of the compilation unit, and whether it has been compiled successfully or not;
e the number of diagnostic messages produced, for each class of severity (see Section 4.3.5);
o which qualifiers were active;
e the VAX/VMS filename of the source file;
e the VAX/VMS filenames of the sublibraries constituting the current program library;
o the number of source text lines;
e clapsed real time and clapsed CPU time;

e a'Compilation terminated® message if the compilation uait was the last in the compilation, or “Com-
pilation of next unit initiated” otherwise.

An example of a compilation summary is shown in Chapter 10.

The Ada Compiler - 49

43.4. Cross-Reference Listing

A cross-reference listing is an alphabetically sorted list of the identifiers, operators and character literals of a
compilation unit. The list has an entry for cach eatity declared and/or used in the unit, with a few exceptions
stated below. Overloading is evidenced by the occurreace of multiple entries for the same ideatifier.

For instantiations of generic units the visible declarations of the generic unit are included in the cross-reference
listing as declared immediately after the instantiation. The visible declarations are the subprogram parameters
for a generic subprogram and the declarations of the visible part of the package declaration for a generic pack-

age.
For type declarations all implicitly declared operations are included in the cross-reference listing.
Cross-reference information will be produced for every constituent character literal for string literals.
The following are not included in the cross-reference listing:

e pragma identifiers and pragma argument ideantifiers;

e oumeric literals;

e record component identifiers and discriminant identifiers. For a selected name whose selector denotes
a record component or a discriminant, only the prefix generates cross-reference information;

e aparcat unit name following separate.
Each entry in the cross-reference listing contains:

o the identifier with at most 15 characters. If the identifier exceeds 15 characters, a bar (*|") is written
in the 16th position and the remaining characters are not printed;

o the place of the definition, ie., a line number if the entity is declared in the current compilation unit,
otherwise the name of the compilation unit in which the entity is declared and the line aumber of the
declaration;

e the numbers of the lines in which the entity is used. An asterisk (**) after a line number indicates an
assignment to a variable, imitialization of a constant, or assignments to functions or user-defined
operators by means of return statements.

An cxample of a cross-reference listing is shown in Chapter 10.

43.5. Diagnostic Messages

The Ada compiler issues diagnostic messages to the diagnostic file (see Section 4.1.3). Diagnostics other than
warnings also appear on sys$output. If a source text listing is requested, diagnostics are also found embedded
in the list file (see Section 4.1.2).

In a source listing a diagrostic message is placed immediately after the source line causing the message. Mes-
sages not related to a particular line are placed at the top of the listing. Every diagnostic message in the diag-
gostic file is followed by a line indicating the corresponding line number in the source text. The lines are
ordered by increasing source line numbers. Line number 0 is assigned to messages not related to any particular
line. In sysSoutput the messages appear in the order in which they are generated by the compiler.

410

The Ada Compiler

" The diagnostic messages are classified according to their severity and the compiler action taken:

Warning:

Error:

Severe Error:

Fatal Error:

The detection of more than a certain number of errors during a compilation is considered a severe error. The

Reports a questionable construct or an error that does not influence the meaning of
the program. Warnings do not hinder the generation of object code. Example: A
warning will be issued for conmstructs for which the compiler detects that
CONSTRAINT_ERROR will be raised at runtime.

Reports an illegal construct in the source program. Compilation continues, but no
object code will be generated. Examples: most syntax errors; most static semantic
errors.

Reports an error which causes the compilation to be terminated immediately. No
object code is generated. Example: a library unit mentioned by a with clause is not
preseat in the current program library.

Reports an error in the Compiler System itsclf. The compilation is terminated
immediate, and no object code is produced. InterACT should be informed about all
such errors (see Appeadix X). The user may be able to circumvent a fatal error by
correcting the program or by replacing program constructs with alternative constructs.
Fatal errors are unlikely to affect program library integrity.

limit is defined in the configuration file (see Section 4.1.4).

43.5.1. Format and Coatent of Diagnostic Messages

For certain syntactically incorrect constructs, the diagnostic message consists of a pointer line and a text line. In

all other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer () to the offending symbol or to an illegal character.

The text line contains the following information:

e the diagnostic message identification "****.

e the message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error:

W: warning
E: error

S: severe error
F: fatal error

Z is an integer which together with the message number X uniquely identifies the compiler
location that generated the diagnostic message. Z is only useful for compiler maintenance

purposes

The Ada Compiler 4-11

The message code (with the exception of the severity code) is suppressed if the configuration
file component SUPPRESS_ERRORNO has the value TRUE (see Section 4.1.4).

e the message text. The text may incdude one context-dependent ficld which contains the name of the
offending symbol; if longer than 16 characters, only the first 16 characters are shown.

Examples of diagnostic messages are:
*e¢ 18W-3: Warning: Exception CONSTRAINT_ERROR will be raised here
ss¢ 320E-2: Name OBJ does not denote a type
¢** S3SE-0: Expression in return statement missing

*** 1508S-0: Specification for this package body not present in the library

Chapter 10 shows an example program with errors and the source listing and diagnostic file produced.

43.6. Generated Assembly Listing

The generated assembly listing consists of two separate files. One (with file type s) is the generated Mips
assembly source produced by the compiler for a compilation unit, prior to being assembled. The other (with
file type 1) is a disassembly listing of the object file produced by assembling the generated assembly source.
(The assembly takes place as part of the compile command.) The disassembly listing shows the generated
machine instructions (which are often different from the assembly source, due to the reorganizing and other
transformations made by the Mips Assembler) and corresponding object code. Both files contain interleaved
Ada source text, as described below.

The Ada source text appears as comments in the generated assembly code, with the source text corresponding
to each Ada scope start, declaration, statement, and scope end appearing before the corresponding generated
assembly code. The line number from the Ada source file also appears in these comments.

If the compilation unit contains generic instantiations or inline subprogram calls where the original Ada source
text is in a different file from the unit being compiled, the source text is brought in from that file and a flle
directive is generated to indicate when that file is being referenced. If an Ada source file cannot be located
(because the user has moved or deleted it since the original compilation, or because it is for a predefined bbrary
unit), then no Ada source comments appear from that file.

The compiler unnests lexically nested subprogram bodies and task bodies in the generated code so that they
appear textually after their parent scopes. This may lead to the Ada source comments for those nested bodies
appearing twice in the generated code.

The bottom of the disassembly listing shows the object code sizes of the compilation unit.
Note that labels and external names in the assembly listing often refer to program unit numbers, rather than (or

in addition to) unit names; if necessary, correspondence can be established through use of Ada PLU (see
Chapter 3).

412 The Ada Compiler

3.7. Return Status

After a compilation the VAX/VMS DCL symbols $status and $severity will reflect whether the compilation
was successful. The possible values of $severity and the low-order bits of $status are 1 (success) or 2 (error).

4.4. The Program Library

This section briefly describes how the Ada compiler changes the program library. For a more general descrip-
tion of the program library, sec Chapter 2.

The compuer is allowed to read from all sublibraries constituting the current program library, but only the
current sublibrary may be changed.
4.4.1. Correct Compilation

In the following examples it is assumed that the compilation units are correctly compiled, i.c., that no errors are
detected by the compiler. :

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with its body unit
and possible subunits. A new declaration unit is inserted in the sublibrary, together with an empty body unit.

Compilation of a library unit which is a subprogram hedy
A subprogram body in a compilation unit is treated as a secondary unit, if the current sublibrary contains a sub-
program declaration or a generic subprogram declaration of the same name and this declaration umt is not
invalid.
In all other cases it will be treated as a library uait, ie.:

e when there is no library unit of that name;

e when there is an invalid declaration unit of that name;

o when there is a package declaraiion, generic package declaration, or an instantiated package or sub-
program of that name.

Compilation of a library unit which is an instantiatioa

A possible existing declaration unit of that name in the current sublibrary is deleted together with its body unit
and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which Is a library unit body
The existing bocy is deleted from the sublibrary together with its possible subunits. A new body unit is inserted.
Compilation of a secondary unit which Is a subunit

If the suuunit exists in ihe sublibrary, it is deleted together with its possible subunits. A new subunit is inserted.

The Ada Compiler 413

4.42. Incorrect Compilations
If the compiler detects an error in a compilation unit, the program library will be kept unchanged.

If a source file consists of several compilation units and an error is detected in any of these compilation units,
the program library will not be updated for any of the compilation units.

4.5. lnstantiation of Generic Units

4.5.1. Order of Compilation

When instantiating a generic unit, it is required that the entire unit including body and possible subunits is com-
piled before the first instantiation or - at the latest - in the same compilation. This is in accordance with [4da
RM 10.3].

4.5.2. Generic Formal Private Types

This section describes the treatmeant of a generic unit with a geaeric formal private type, where there is some
construct in the generic unit that requires that the corresponding actual type must be constrained if it is an array
type or a type with discriminants, and instantiations exist with such an unconstrained type [Ada RM 123.2(4)].

This is considered an illegal combination. In some cases the error is detected when the instantiation is com-
piled, in other cases when a constraint-requiring construct of the generic unit is compiled:

1. If the instantiation appears in a later compilation unit than the first constraint-requiring construct of
the generic unit, the error is associated with the instantiation which is rejected by the compiler.

2. If the instantiation appears in the same compilation unit as the first constraint-requiring construct of
the generic unit, there are two possibilities:

(a) U there is a constraint-requiring coastruct of the generic unit after the instantiation, an error
message appears with the instantiation.

(b) 1If the instantiation appears after all constraint-requiring coastructs of the generic unit in that
compilation unit, an error message appears with the constraint-requiring comstruct, but
refers to the illegal instantiation,

3. The instantiation appears in an earlier compilation unit than the first constraint-requiring construct of
the generic unit, which in that case appears in the generic body or a subunit. If the instantiation has
been accepted, the instantiation corresponds to the generic declaration only, and does not include the
body. Nevertheless, if the generic unit and the instantiation are located in the same sublibrary, then
the compiler considers it an error. An error message is issued with the constraint-requiring construct
and refers to the illegal instantiation. The unit containing the instantiation is not changed, however,
and is not marked as invalid.

Chapter 3§
The Ada Linker

Before a compiled Ada program can be executed it must be linked into a load module by the Ada Linker.

In its normal and conventional usage, the Ada Linker links a single Ada program.

The Ada Linker also has the capability to link multiple Ada programs into one load module, where the prn-
grams will execute coocurrently. This capability, which is outside the definition of the Ada language, is called
multiprogramming, and is further discussed below.

The Ada link, while one command, can be seen as having two parts: an *Ada part® and a “Mips part”.

The Ada part performs the link-time functions that are required by the Ada language. This includes checking
the consistency of the library units, and constructing an elaboration order for those library units. Any errors
found in this process are reported.

To effect the elaboration order, the Ada link constructs an assembly language “elaboration caller routine® that is
assembled and linked into the executable load module. This is a small routine that, during execution, gets coa-
trol from the Ada runtime executive initiator. It invokes or otherwise marks the elaboration of cach Ada library
unit in the proper order, then returns control to the runtime executive, which in turn invokes the main program.
The action of the elaboratioa caller routine is transparent to the user.

If no errors are found in the Ada part of the link, the Mips part of the link takes place. This consists of assem-
bling the elaboration caller routine, then invoking the InterACT Mips Embedded Systems Linker, linking the
program unit object modules (stored in the program library) and the claboration caller routine together with
the necessary parts of the Ada runtime executive (and some other runtime modules needed by the generated
code). The output of the full Ada link is an executable load module file.

The invocations of the Mips Assembler and Linker are transpareat to the user. However, qualifiers on the Ada
link command allow the user to specify additional information to be used in the target ink. Through this facil-
ity, a wide variety of runtime executive optional features, customizations, and user exit routines may be intro-
duced to guide or alter the execution of the program. These are described in the Ada Mips Runtime Executive
Programmer’s Guide. This facility may also be used to modify or add to the standard Mips Embedded Systems
Linker control statements that are used in the Mips part of the link; in this way, target memory may be precisely
defined. The control statements involved are described in the InterACT Mips Embedded Systems Linker Refer-
ence Manual.

52 The Ada Linker

_ Multiprogramming

As stated above, multiprogramming is the capability of linking multiple Ada programs into one load module,
where the programs will execute concurrently. As this concept is outside the definition of the Ada language, the
discussion of multiprogramming here is specific to this Compiler System’s implementation.

In multiprogramming, Ada units (comprising code, literals, and/or data) that are common to more than one
program are linked but once, and are shared by those programs. With respect to code and literals, this has no
effect upon execution, and results in more efficent memory utilization. However, with respect to data, this
means that the actions of one Ada program can affect, and possibly cause erroneous behavior in, another Ada
program. Such an interaction may be desired, as in the case of a common library package’s data being used to
communicate between programs. If such an interaction is no¢ desired, the program units that would otherwise
be common may be rewritten as generic units, and instantiated with a different name for each program thar uses
them.

Elaboration of common uaits is only done once, by the “first” program that depends on them. This ordering is
defined by the order in which the programs are named to the Ada link expanded memory link is being done).
command.

In order to ensure that units are elaborated before being referenced, the runtime executive elaborates the units
of each program serially, waiting for the elaborations for one program to finish before going on to the next
program’s elaborations. When all elaborations have completed, the main programs themselves are eligible to
execute. Programs, and any tasks within them, are scheduled by their Ada priority on a global basis. See the
Ada Mips Runtime Executive Programmer’s Guide for more details on this process, and oa the critenia by which
programs are scheduled and dispatched.

The main programs involved in a multiprogramming link must all be present within the same program library.

5.1. The Invocation Command

The Ada Linker is invoked by submitting the following VAX/VMS command:

$ adamipslink{qualifier) main-program-name{,main-program-name}

As part of the "Mips part” of an Ada link, a temporary subdirectory is created below the current default direc-
tory. Use of this subdirectory, the name of which is constructed from the VAX/VMS process-id, permits con-
current linking in the same current default directory. The subdirectory contains work files only, and it and its
contents are deleted at the end of the link.

A consequence of the use of this subdirectory is that an Ada link cannot be done from a current default direc-
tory that is eight directory levels deep, as that is the VAX/VMS limit for directory depth.

Infrequently, a coatrol-C or control-Y interrupt of an Ada link will leave the subdirectory present. If this hap-
pens, the subdirectory and its contents must be deleted, in order that subsequent links (by that process, in that
current default directory) may take place.

The Ada Linker 53

§.1.1. Parameters and Qualifiers

Default values exist for all qualifiers as indicated below. All qualifier names may be abbreviated (characters
omitted from the right) as long as no ambiguity arises.

main-program-name

If a single program link is being done, main-program-name must specify a main program which is a library unit
of the current program library, but not necessarily of the current sublibrary. The library unit must be a parame-
terless procedure. Note that main-program-name is the identifier of an Ada procedure; it is not a2 VAX/VMS
file specification.

When main-program-name is used as the file same in Ada link output (for the load module, memory map file,
etc.), the file name will be truncated to 29 characters if aecessary.

If a multiprogramming link is being done, multiple main-program-names are specified, separated by commas.
The first name supplied is the one used for the file name in Ada link output.

The first three of the qualifiers below pertain to the *Ada part” of the Ada link. The remaining qualifiers per-
tain to the “Mips part® of the link.

/og{ =file-spec]
/nolog (default)

The qualifier specifies whether a log file is to be produced during the linking. By default no log file is pro-
duced. If /log is specified without a file specification, a log file named main-program-namelog is created
in the current default directory. If a file specification is given, that file is created as the log file. The contents of
the log file are described in Section 5.3.

library=file-spec
/library=adamips_library (default)

This qualifier specifies the current sublibrary and thereby also the current program library, which consists of the

current sublibrary through the root sublibrary (see Chapter 2). If the qualifier is omitted, the sublibrary desig-
nated by the logical name adamips_library is used as current sublibrary.

/mp
This qualifier specifies that a multiprogramming link be done. By default a singie program link is done.
Joptions =*-Dsymboi-name =value{,symbol-name =value}*

This qualifier is used to override certain default values that are used by the Ada runtime executive. If the
qualifier is omitted, no overriding takes place.

The qualifier specifies a quoted string, beginning with -D, containing one or more special symbol assignmeats
that override the default values of these symbols. Numeric values are treated as decimal.

If a multiprogramming link is done, suffixes are used in the special symbol names to indicate which programs
the overrides are for.

54 The Ada Linker

Since the /options value cannot be continued onto a new line, an alternative method is available if a large
aumber of overrides must be specified. This involves creating a file of Mips Assembler preprocessor directives
specifying the overrides, and then defining that file with the logical name adamips_runtime_options.

The names of these specal symbols, their default values, and the runtime behavior that they control, are
described in the Ada Mips Runtime Executive Programmer’s Guide, as are the details of the alternative method.

/standard_coatrol{ = file-spec]
/standard_coutrol =adamips_standard_control (default)

This qualifier spedifies the file name of "standard" Mips Embedded Systems Linker control statements that are
to be used for all links for an installation or project. If file-spec is omitted or only partially specified,
[ladamipsctl is used as a full or partial default. If the qualifier is omitted, the logical name
adamips_standard_control is assumed to define such a file, using the same partial default. If that logical name
is not defined or the specified file does not exist, no standard control statements are used.

Jcontrol[=file-spec]

This qualifier specifies the file name of "user” Mips Embedded Systems Linker control statements that are to be
used for this particular link. If file-spec is omitted or only partially speafied, [jmain-program-name.ctl is used
as a full or partial default. If the qualifier is omitted or the specified file does not exist, no user control state-
ments are used.

The files designated by the /standard_control and /control qualifiers are used to form the full input control
statement stream to the Mips Embedded Systems Linker, in this concatenated. order:

/standard_control file (if it exists)
<statements generated by the Ada part of the link>
/control file (if qualifier active and it exists)

The statements generated by the Ada part of the link are usually just object_file statements for the elaboration
caller routine(s) and main program(s).

The Compiler System is delivered with adamips_standard _control defined to a file that contains a default set
of standard control statements. These consist of the minimal relocation statements required by the Mips
Embedded Systems Linker, and various other necessary directives.

/user_rts =search-list
/user_rts=adamips user_rts (default)

This qualifier specifies a VAX/VMS search list that contains cither user-dependent RTE modules, such as a
change to the task scheduler for a particular application, or pragma INTERFACE (ASSEMBLY) bodies for
subprograms that are oot library units (see Section F2). Modules in this search list’s directory(ies) are taken
ahead of those in the directories specified by /target_rts (sce below) and those in the standard RTE directories
(including those RTE modules in the predefined library). If the qualifier is omitted, logical name
adamips_user_rts is used, if the name has been defined.

The Ada Linker : 55

/target_rts = search-list
/target_rts=adamips_target rts (default)

This qualifier specifies a VAX/VMS scarch list that contains Mips-implementation(target)-dependent runtime
executive (RTE) modules, such as modules to do character 1/O for a particular simulator or microprocessor.
Modules in this search list’s directory(ics) are taken ahead of those in the standard RTE directory. If the
qualifier is omitted, logical name adamips_target_rts is uscd, if the name bas been defined.

/debug
/oodebug (default)

When this qualifier is given, the Ada Linker will produce a symbolic debug informatioa file, containing symbolic
debug information for all program units involved in the link that were compiled with the /debug compiler
qualifier active. By default no such file is produced, even if some of the program units linked were compiled
with /debug active.

This symbolic debug informatioa file is used by the InterACT Symbolic Debugging System.

The show/containers command of Ada PLU may be used to determine which units in the program library have
debug information containers, i.c., which units were compiled with /debug active.

It is important to note that the identical executable load module is produced by the Ada Linker, whetber or not
the /debug qualifier is active.

/eslink_qualifiers = *Mips Embedded Systems Linker qualifiers*

This qualifier specifies a string containing onc or more command qualifiers to be passed to the execution of the
Mips Embedded Systems Linker.

/stop(=number]

This qualifier, when used with no number, results in the Ada link stopping after the “Ada part® has doae all
Ada-required checking, and has areated a VAX/VMS DCL command file (located in the temporary subdirec-
tory) that executes the "Mips part”, but before that command file has actually been invoked.

When used with number = 1, the command file is invoked, but stops before the Mips Embedded Systems
Linker is invoked, leaving the temporary subdirectory and its files in place. When used with number = 2, it exe-
cutes the Mips Embedded Systems Linker but then stops before the symbolic debug information file is pro-
duced.

This qualifier is useful for trouble-shooting, or for giving the user an intervention point for Ada link customiza-
tions not covered by any of the available options.

§.12. Examples

Some examples of single program and multiprogramming links:

$ adamips/lick fight simulator ! single program

$ adamips/lick/mp ablebakercharlle ! multiprogramming

5-6 The Ada Linker

An example of overriding default runtime executive values, in this case the system heap size and main stack size:
$ adamips/link/opt="-Drtheapszl = 48°1024,rtmstacksz1 =8000" flght _simulator

An example of overriding values when multiprogramming is involved (the system beap size is overridden for
cach program):

$ adamips/link/mp/opt = "-Drtheapszl =20°1024,rtheapsz2 = 12°1024,rtheapsz3 = 50°1024° able,baker chariie
Now, an example of introducing “user" Mips Embedded Systems Linker control statements:

$ adamips/link/control test_driver
where test_driver.ctl in the current directory contains

search_path is
[dma.object]) "
end
cbject_file is
dmacheck
end
informstional messages are off

Now, an example of the use of user and target RTE directories:

$ define adamips_target rts [tektronicsJo.test],[tektronics.o]
$ adamips/link/user_rts=sysSuser:{test.stor_mgr] fHEght_simulator

Runtime executive modules will be looked for in the directory specified by the /user_rts qualifier, then in the
two directories specified by the adamips_target rts logical name, and lastly in the standard RTE directory.

To revert to referencing only the standard RTE directory:

$ deassign adamips_target rts
$ adamips/link ﬂght simulator

52. Load Module Output

If an Ada linking is successfully completed, the Mips Embedded Systems Linker produces an executable load
module file naamed main-program-name abs in the current default directory.

The load module is in InterACT load module format, which may require further reform..tting befcre being
loaded into Mips hardware or simulators (see Chapter 8).

The Ada Linker 57

. 82.1. Symbolic Debug Information Output
If an Ada linking with the /debug qualifier active is successfully completed, a symbolic debug information file

named main-program-name.d is created in the current default directory. This file is used by the InterACT Sym-
bolic Debugging System.

$3. Linker Text Outpat
The Ada Linker produces the following text output:

1. Diagnostic messages other than warnings are written to sysSoutput, and all messages are writtea to
the log file if /log is active.

2. An claboration order list is written to the log file if /log is active.
3. A required recompilations list is written to sysSoutput if not emgty, and to the log file if /log is active.
4. A linking summary is written to the log file if /log is active.

5. A Mips Embedded Systems Linker memory map file, main-program-name.map. (See the InterACT
Mips Embedded Systems Linker Reference Manual for contents.)

6. An assembly listing of the generated module that elaborates all library units, eSmain-program-name.s
and J1. If a multiprogramming link is done, separate listings are produced for each program. It may
sometimes be useful to see the expanded assembly source of this module, if default runtime executive
values have been overridden; this may be produced by use of the /moassemble qualifier of the
InterACT Mips Assembler.

7. If a multiprogramming link is done, an assembly listing of a generated module that communicates
program information to the Ada runtime executive, $mpt.s (no disassembly listing is produced as this
module has no code). The same note applies as above about expanded assembly source.

Note that the log file contains information relevant to the "Ada part” of the link, while the memory map file
contains information relevaat to the "Mips part® of the link.

53.1. Diagnostic Messages

The Ada Linker may issue two kinds of diagnostic messages, warnings and severe errors.

A warning reports something which does not preveat a successful linking, but which might be an error. A warn-
ing is issued if tLe body unit is invalid or is lacking an object code container for a program unit which formally
does not need a body. The linking summary ou the log file contains the total number of warnings issued.

A severe error message reports an error which preveats a successful linking. Any inconsistency detected by the
linker will cause a severe error message, ¢.g., if some required unit does not exist in the library or if some time
stamps do not agree.

Examples of diagnostic messages from the Ada Linker can be found in Chapter 10.

$32. Elaboration Order List

The elaboration order list contains an entry for each unit included, and shows the order in which the uniis will
be elaborated. For cach unit the unit type, the compilation time, and the depeadencies are shown. Further-
more, any claboration inconsistencies are reported.

When a multiprogramming link is done, the elaboration order lists will contain the full elaboration order of

each program, without regard to multiprogramming. These orders can be compared to the elaboration caller
assembly listing for a program, to see which elaborations were omitted due to multiprogramming.

533. Required Recompilations List

The required recompilations list reflects any inconsistencies detected in the library, that prevented the link from
taking place.

The entries in the list contain the unit name, and an indication of the unit being a declaration unit, a body unit,
or a subunit. The list is in a recommeaded recompilation order, consistent with the dependencies among the
units.

If the oumber of recompilations is small, they can usually be performed by hand using this list. Otherwise, the
Ada Recompiler (see Chapter 6) may be used to accomplish the recompilation in a fully automatic way.

Examples of required recompilation lists can be found in Chapter 10.

5§3.4. Return Status
After an Ada link the VAX/VMS DCL symbols $status and $severity will reflect whether the link was success-
ful. The possible values of $severity and the low-order bits of $status are any of the values defined by DCL.
§3.5. Linking Summary
The linking summary contains the following information:

e parameters and active qualifiers;

o the VAX/VMS file names of the sublibraries constituting the current program library;

e the number of cach type of diagnostic messages;

e atermination message, telling whether a linking has terminated successfully or unsuccessfuily.

The Ada Linker ' 59

§.4. Commands for Defining the Target Eavironment

There are a aumber of different target environments that Ada programs can run in, due to different implemen-
tations of the Mips R2000/R3000 architecture.

Each of these environments may require some changes to either the standard linker control statements, or the
runtime executive modules, that are used in an Ada link. These changes may be effected by various Ada link
qualifiers and their logical name defaults, as described in Section S.1.1. However, convenicace commands, of
the form use- (for example, usesim for the laterACT Mips lastruction Set Architecture Simulator), exist to
define the appropriate Ada link logical names. These commands are invoked before an Ada link, and remain in
effect for subsequent Ada links until changed by another such command.

These commands are described in full detail in the 4da Mips Runtime Executive Programmer’s Guide.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation, as
described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to compiler
documentation and not to this report. Implementation-specific portions
of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2_147_483_648..2_147_483_647;

type FLOAT is digits 6 range -2#1.0#E128..
2#0.1111111111111111111114E128;

type LONG_FLOAT is digits 15
range -2#1.04E1024..
2%0.111111111111111111111112111121111111111111211111111114E1024;

type DURATION is delta 2#**(-14)
range =131 072.0..131_071.0;

end STANDARD;

Appendix F
Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the Ada Mips Cross-Compiler System, including those required in the Appendix F frame of Ada RM.

F.1. Predefined Types in Package STANDARD

This section describes the implementation-dependent predefined types declared in the predefined package
STANDARD [Ada RM Annex C], and the relevant attributes of these types.

F1.1. Integer Types
One predefined integer type is implemented, INTEGER. It has the following attributes:

INTEGER'FIRST = -2_147 483 648
INTEGER'LAST = 2 147 483 647
INTEGERSIZE = 32

F.12. Floating Point Types

Two predefined floating point types are implemented, FLOAT and LONG_FLOAT. They have the following
attributes:

FLOATDIGITS = 6

FLOATFIRST = -2#L04E128

FLOATLAST = 2#01111111111111111111114E128
FLOAT'MACHINE_EMAX - 128

FLOATMACHINE_EMIN - 125
FLOAT'MACHINE_MANTISSA - %
FLOATMACHINE_OVERFLOWS = TRUE
FLOAT'MACHINE_RADIX = 2

FLOATMACHINE_ROUNDS = TRUE

FLOAT'SAFE_EMAX = 125

FLOAT'SAFE:IARGE 2#0.111111111111111111111#E125

F-2 ’ Appendix F of the Ada Reference Manual

FLOAT'SAFE_SMALL = 2#0.1#E-125
FLOAT'SIZE = 32
LONG_FLOATDIGITS 15
LONC_SLOAT'FIRST -2#1.0#E1024

LONG_FLOAT'LAST

LONG_FLOAT'MACHINE_EMAX = 104
LONG_FLOAT'MACHINE_EMIN = .1021
LONG_FLOAT'MACHINE_MANTISSA = 53
LONG_FLOAT'MACHINE_OVERFLOWS = TRUE
LONG_FLOAT'MACHINE_RADIX - 2
LONG_FLOAT'MACHINE_ROUNDS = TRUE
LONG_FLOAT'SAFE_EMAX - 13

LONG_ FLOA'PSAFE LARGE
LONG _, FLOAT'SAFE SMALL
LONG FLOAT'SIZE

2#0.1#E-1023
64

F.13. Fixed Point Types

One kind of anonymous predefined fixed point type is implemented, fixed (which is not defined in package
STANDARD, but is used here only for reference), as well as the predefined type DURATION.

For objects of fixed types, 32 bits are used for the representation of the object.

For fixed there is a virtual predefined type for each possible value of small [4da RM 3.5.9]. The possible values
of small are the powers of two that are representable by a LONG_FLOAT value, unless a length clause specify-
ing TSMALL is given, in which case the specified value is used.

The lower and upper bounds of these types are:

lower bound of fixed types = -2_147 483 648 * small
upper bound of fired types = 2_ 147 83 647‘:mall

A declared fixed point type is represeated as that predefined fixed type which has the largest value of small not
greater than the declared delta, and which has the smallest range that includes the declared range constraint.

Any fixed point type T has the following attributes:

TMACHINE OVERFLOWS = TRUE
TMACHINE_ROUNDS = TRUE

Type DURATION
The predefined fixed point type DURATION has the following attributes:

DURATION'AFT - S
DURATION'DELTA = DURATION'SMALL

2#0.111#E1024

2#0.111#E1023

Appeadix F of the Ada Reference Manual F-3

DURATION'FIRST = -131.0720
DURATION'FORE = 7

DURATION'LARGE = 131071999938965E0S
DURATION'LAST = 131070
DURATION'MANTISSA = 31

DURATION'SAFE_LARGE = DURATIONLARGE
DURATION'SAFE_SMALL = DURATION'SMALL
DURATION'SIZE - 3

DURATION'SMALL = 2°°(-14) = 6.10351562500000E-05

F2. Predefined Language Pragmas
This section lists all language-defined pragmas and any restrictions on their use and effect as compared to the

definitions given in Ada RM.

F21. Pragma CONTROLLED

This pragma has no eff=ct, as no automatic storage reclamation is performed before the point allowed by the
pragma.

F22. Pragma ELABORATE

As in Ada RM.

F23. Pragma INLINE
This pragma causes inline expansion to be performed, except in the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

2. The subprogram call appears in an expression on which conformance checks may be applied, ic., in a

subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement.

3. The subprogram is an instantiation of the predefined generic subprograms
UNCHECKED_CONVERSION or UNCHECKED_DEALLOCATION. Calls to such subprograms
are expanded inline by the compiler automatically.

4. The subprogram is declared in a generic unit. The body of that generic unit is compiled as s secon-
dary unit in the same compilation as a unit containing a call to (an instance of) the subprogram.

S. The subprogram is declared by a renaming declaration.
6. The subprogram is passed as a generic actual parameter.

A warning is given if inline expansion is not achieved.

F4 Appendix F of the Ada Reference Manual

F2.4. Pragma INTERFACE

This pragma is supported for the language names defined by the enumerated type INTERFACE_LANGUAGE
in package SYSTEM.

Language ASSEMBLY

Ada programs may call assembly language subprograms that have been assembled with the VAX /VMS-hosted
IntersACT Mips Assembler. The compiler generates a call to the name of the subprogram (in all upper case). If
a call to a different external name is desired, use pragma INTERFACE_SPELLING in conjunction with
pragma INTERFACE (see Section F.3).

Parameters and results, if any, are passed in the same fashion as for a normal Ada call (see Appendix P).

Assembly subprogram bodies are not claborated at runtime, and no ruatime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada calling and environ-
meatal conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program units from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragma INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-
cedure specification for the main program must contain context clauses that will (transitively) name all Ada
program uaits.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a library unit, the assembled sub-
program body object code module must be put into the program library via the Ada Library Injection Tool (see
Chapter 7). The Ada Linker will then automatically include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object
code module (via the /user_rts qualifier, sce Section 5.1), so that the InterACT Mips Embedded Systems
Linker can find it.

Languages C, FORTRAN, and Pascal

It is possible to use pragma INTERFACE to call subprograms writtea in these other languages supported by
MIPS Computer Systems, Inc. compilers. This is because the object code format and the compiler protocols
(MIPS Appendix D) used by the Compiler System are the same as those used in the MIPS-supplied compilers.

To do this, compile such subprograms on a MIPS computer system (making sure they are compiled for a big-
endian configuration), and then transfer the object files (and any language runtime library object files needed
by the subprograms) to VAX/VMS. (Make sure the transfer preserves the binary nature of the files.) Thea
proceed as with assembly language subprograms.

Appeadix F of the Ada Reference Manual ’ F.S

F25. Pragma LIST

As in Ada RM.

F26. Pragma MEMORY SIZE

This pragma has no effect. See pragma SYSTEM_NAME.

F2.7. Pragma OPTIMIZE

This pragma has no effect.

F23. Pragma PACK

This pragma is accepted for array types whose component type is an integer, enumeration, or fixed point type
that may be represented in 32 bits or less. (The pragma is accepted but has no effect for other array types.)

The pragma normally has the effect that in allocating storage for an object of the array type, the components of
the object are each packed into the next largest 2® bits needed to contain a value of the component type. This
calculation is done using the minimal size for the component type (see Section F.6.1 for the definition of the
minimal size of a type).

However, if the array’s component type is declared with a size specification length clause, then the components
of the object are each packed into exactly the number of bits specified by the length clause. This means that if
the specified size is not a power of two, and if the array takes up more than a word of memory, then some com-
ponecats will be allocated across word boundaries. This achieves the maximum storage compaction but makes
for less efficient array indexing and other array operations.

Some examples:

type BOOL_ARR is array (1..32) of BOOLEAN; -~ BOOLEAN minimel size is 1 bit

pragma PACK (BOOL_ARR); -- each component pecked into 1 bit
type TINY_INT is range -2..1; -- minimal size is 2 bits

typs TINY_ARR is srray (1..32) of TINY_INT;

pragma PACK (TINY_ARR); -« each component pecked into 2 bits

type SMALL_INT {s range 0..43; -~ minimal size i3 6 bits, not a power of two
type SMALL_ARR is array (1..32) of SMALL_INT;

pregma PACK (SMALL_ARR); <= thus, each component packed into 8 bits
type SULL_INT_2 {s renge 0..63; -- minimel size fs 6 bits, but

for SWULL_INT_2'SIZE use 6; =« this time length cleuse is used

type SMALL_ARR_2 is erray (1..32) of SMALL_INT_2;

pragme PACK (SMALL_ARR_2); -+ thus, eech component packed into 6 bits;

== some components cross word bourcieries

Pragma PACK is also accepted for record types but has no effect. Record representation clauses may be used to
“pack” compoaents of a record into any desired number of bits; see Section F.6.3.

F-6 Appendix F of the Ada Reference Manual

F2.9. Pragma PAGE

AsinAda RM.

F2.10. Pragma PRIORITY

As in Ada RM. See the Ada Mips Runtime Executive Programmer’s Guide for how a default priority may be set.

F2.11. Pragma SHARED

This pragma has no effect, in terms of the compiler (and a warning message is issued).

F2.12. Pragma STORAGE_UNIT

This pragma has no effect. See pragma SYSTEM_NAME.

F2.13. Pragma SUPPRESS

Only the “identifier” argument, which idertifies the type of check to be omitted, is allowed. The *[ON =>]
name® argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma SUPPRESS with all checks other than DIVISION_CHECK results in the corresponding checking code
not being generated. The implementation of arithmetic opcrauons is such that, in generai, pragma “UPPRESS
with DIVISION_CHECK has no effect. In this case, runtime executive customizations may be used to mask the
overflow interrupts that are used to implement these checks (see the 4da Mips Runtime Executive Programmer’s
Guide for details).

F2.14. Pragma SYSTEM_NAME

This pragma has no effect. The only possible SYSTEM_NAME is Mips. The compilation of pragma
MEMORY_SIZE, pragma STORAGE_UNIT, or this pragma does not cause an implicit recompilation of

package SYSTEM.

FJ. Implementation-dependent Pragmas

F3.1. Pragma EXPORT

This pragma is used to define an external name for Ada objects, so that they may be accessed from non-Ada
routines. The pragma has the form

pragma EXPORT (object_name [2xtenal_name_string_literal]);

The pragma must appear immediately after the associated object declaration. If the second argument is

Appeandix F of the Ada Reference Manual F-7

omitted, the object name in all upper case is used as the external name. Note that the Mips Assembler is case-
sensitive; the second argument must be used if the external name is to be other than all upper case.

The associated object must be declared in a library package (or package nested within a library package), and
aust oot be a statically-valued scala: coastant (as such constants are not allocated in memory).

Identical external names should not be put out by multiple uses of the pragma (names can always be made
unique by use of the second argument).

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
pragms EXPORT (ABLE);

Saker : STRING(1..8);
pragma EXPORT (Baker, “SBaker");

ond GLOBAL;

may be accessed in the following assembly language fragment

{w $8,A8LE # get value of ABLE

la $9,8aker ¥ get ackiress of Baker

F32. Pragma IMPORT

This pragma is used to associate an Ada object with an object defined and allocated externally to the Ada pro-
gram. The pragma has the form

pragma IMPORT (object_name [,exernal_name_string_literal]);

The pragma must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name in all upper case is used as the external name. Note that the Mips Assembler is case-
seasitive; the second argument must be used if the external name is to be other than all upper case.

The associated object must be declared in a library package (or package nested within a library package). The
associated object may not have an explicit or implicit initialization.

As an cxample of the use of this pragma, the objects in the following Ada Library package

package GLOBAL s

ABLE : FLOAT;
pragme IMPORT (ABLE);

Baker : STRING(1..8);
progma IMNPORT (Baker, "Saker®);

end GLOBAL;

F-8§ - Appendix F of the Ada Reference Manual

arc actually defined and allocated in the following assembly language fragment

.globl ABLE
.lcomm ABLE, 4
.globl Beker

.lcomm Baker, 8

F33. Pragma INTERFACE_SPELLING
This pragma is used to define the external name of a subprogram written in another language, if that external
name is differeat from the subprogram name (if the names are the same, the pragma is not needed). Note that

the Mips Assembler is case-sensitive; this pragma must be used if the externai name is to be other than all
upper case. The pragma bas the form

pragma INTERFACE_SPELLING (subprogram_name, external_name_string _literal);

The pragma should appear after the pragma INTERFACE for the subprogram.

This pragma is useful in cases where the desired external name contains characters that are not valid in Ada
identifiers. For example,

procedure Cornect_Bus (SIGNAL : INTEGER);
progme INTERFACE (ASSEMBLY, Connect_Sus);
progme [NTERFACE_SPELLING (Connect_Bus, “Connect_Bus”);

F34. Pragma SUBPROGRAM_SPELLING

This pragma is used to define the external name of an Ada subprogram. Normally such names are compiler-
geaerated, based on the program library unit aumber. The pragma has the form

pragma SUBPROGRAM _SPELLING (subprogram_name [, external_name_string_literal});
The pragma is allowed w: _rever a pragma INTERFACE would be allowed for the subprogram. If the second

argument is omitted, the object name in all upper case is used as the external name. Note that the Mips Assem-
bler is case-sensitive; the second argumeat must be used if the external name is to be other than all upper case.

This pragma is useful in cases where the subprogram is to be referenced from another language.

Appendix F of the Ada Reference Manual

FA. Implementation-dependent Attributes

None are defined.

FS. Package SYSTEM

The specification of package SYSTEM is:

pockage SYSTEM s

type ADORESS
ADORESS_NULL

typs NAME
SYSTEN_NAME

STORAGE_UM1T
MEMORY_S12E

uiu_Iut
Ax_1nT

X 01GITS
HAX_MANT [SSA
FIME_DELTA
11eK

sbtype PRIORITY

is new INTEGER;
: constant ADORESS :s 0;

fs (Mips);

¢ constant

constant

: constant

constant
constant

constant :
: congtant :
: constant :
: constant :

is INTEGER

NAME := Mips;

8;
& * 1026 * 1026 * 1026;

-2_147_483_647-1;
2_147_483_s47;

range 0..255;

type INTERFACE_LANGUAGE is (Assembly, C, Fortran, Pascal);

~= these are the possible ADDRESS

values for interrupt entries

a0 x : constant := | ¢ 2¢e3. -« (MOD is reserved word)
Ra% I8 : constant := 2 ¢ 2%*2.
TLBS : constant := 3 ¢ 2we2.
AcEL : congtant s & * 2e%Q.
MES : constant := § ¢ 2weQ.
18¢ : constent := § ¥ 29%2.
DBE s constant = 7 ® 2e%2.
Sys : congtant := 8 ® 29®2.
% : constant :s 9 * 2ewp.

: constant ;= 10 ¢ 2%e2.
(-1 : constant :s 1} ¢ 2eeQ.
Ovt : congtant :s 12 ® 2ee.
asperved13 : constent :s 13 ® 2e*2.
Aesservedié : constant := 14 * 29*Q.
Reserved!$: congtant :s 15 * 2ee2.
ao : constant :s 2%e(® Jweg.
a1 : constant :u 29e{ ¢ Jweg.
190 t congtent :s 29 ¢ 2eeqQ.
b7 4} : constant :s 29w ¢ 2weq(Q.
192 : constant := 2¢e2 ¢ 2eeq(Q.
] : constant :s 2993 ¢ 2weqQ.
14 3 constant :s 2%%4 * 2eeq(.
i) : constent :s 299§ * 2eeqQ.
-= these sre only meaningful for the GISA processor
QISA0 : constant := IPO ¢+ 1 ¢ O;
GI1SA1 : constant := [P0 + 1 + 1;
S813A2 : constant := [P0 ¢ 1 ¢ 2:
G1sA3 : constant :s IP0 ¢+ 1 ¢+ 3:
CIsA4 : constant := [P0 ¢ 1 + 4;
&18a5 : constant := [P0« 1+ 5;

F-9

F-10 Appendix F of the Ada Referszce Manual

GISAS : constant :s 1P0 ¢ 1 + §;
GISA? : constant := [P0 ¢ 1 ¢ 7;
GISAS : constant :s [P0 + 1 + §;
GISA? : constant :x [P0 ¢+ 1 ¢+ 9;
GISA10 : constant := [P0 + 1 + 10;
GISAY : constant :s [PQ + 1 < 11;
GIsA12 : constant := [P0 + 1 + 12;
GIsA13 : constant :s 1P0 + 1 ¢+ 13;
GISAYS : constant := PO « 1 « 14;
GISAYS : constant := [P0 + 1 + 15;
GISA1S : constant := 1P0 + 1 + 16;
GIsA17 : constant := [P0 ¢ 1 ¢ 17;
GISA1S : constant := 1P0 + 1 + 18;
GISAY9 : constant := [P0 ¢+ 1 ¢+ 19;
GISA20 s constent := 1P0 + 1 « 20;
GISA2Y : conatent := [PO + 1 + 2i;
GISA22 : constant :s [P0 « 1 ¢ 22;
GISAZ3 : constant := [P0 ¢ 1 + 23.
G1SA24 : constant :s 1P0 + 1 + 24;
GISA2S : constant := [P0 + 1 + 25;
GISA26 : constant := [P + | + 26;
Gl1sA27 : constant := IPQ ¢ 1 + 27;
GISA28 : constent := [P0 + 1 + 28;
GISA29 : constant :s PO + 1 + 29;
GISA30 : constant :=]P0 + 1 + 30;
GISA31 : constant := 1P0 « 1 + 3%;
end SYSTENM;

Note that since timers are not part of the Mips architecture specification, differeat Mips R2000/R3000 target
implementations may coatain timers with varying characteristics. This has an effect on the granularity of the
CLOCK function in package CALENDAR. The value of the named number TICK above, which represents
th» granularity, corresponds to the Mips R2000/R3000 target implementation that the InterACT Ada Mips
Cross-Compiler System is validated upon. It also is the most common value for the different Mips
R2000/R3000 target implementations that the Compiler System supports; however, for some supported target
implementations, it is incorrect. '

For more details on timers and the differeat Mips R2000/R3000 target implementations, see the Ada Mips Run-
time Executive Programmer's Guide.

FA4. Type Representation Clauses

The three kinds of type representation clauses - length clauses, enumeration representation clauses, and
record representation clauses ~ are all allowed and supported by the compiler. This section describes any res-
trictions placed upon use of these clauses.

Change of representation [Ada RM 13.6] is allowed and supported by the compiler. Any of these clauses may
be specified for derived types, to the extent permitted by Ada RM.

F&4.1. Leagth Clauses

The compiler accepts all four kinds of length clauses.

Size specification: T°SIZE

The size specification for a type T is accepted in the following cases.

Appendix F of the Ada Reference Manual ’ F-11

If T is a discrete type then the specified size must be greater than or equal to the minimal size of the type, which
is the number of bits needed to represent a value of the type, and must be less than or equal to the size of the
underlying predefined integer type.

The calculation of the minimal size for a type is done not only in the context of length clauses, but also in the
context of pragma PACK record representation clauses, the T'SIZE attribute, and unchecked conversion. The
definition preseated here applies to all these contexts.

The minimal size for a type is the minimum number of bits required to represent all possible values of the type.
When the minimal size is calculated for discrete types, the range is extended to include zero if necessary. That
is, both signed and unsigned represeatations are taken into account, but not biased representations. Also, for
unsigned represeatations, the component subtype must belong to the predefined integer base type normally
associated with that many bits.

Some examples:

type SMALL_INT is range -2..1;
for SMALL_INT'SIZE use 2; -- OK, signed representation, needs minimm 2 bits

type U_SMALL_INT is range 0..3;
for U_SMALL_INT'SIZE use 2; -- OK, unsigned representation, needs minimm 2 bits

type B_SMALL_INT is renge 7..10;
for B_SMALL_INT/SI2E use 2; -- illegal, would be bissed representation
for B_SMALL_INT'SIZE use 4; -~ 0K, the extended 0..10 range needs minimm 4 bits

type U_BIG_INT is renge 0..2*%32-1;
for U_BIG_INT'SIZE use 32; -- iliegal, ramge outside of 32-bit INTEGER predefined type

If T is a fixed point type then the specified size must be greater than or equal to the minimal size of the type,
and less than or equal to the size of the underlying predefined fixed point type. The same definition of minimal
size applies as for discrete types.

If T is a floating point type, an access type or a task type, the specified size must be equal to the aumber of bits
normally used to represeat values of the type (32 or 64 for floating point types, 32 for access and task types).

If T is an array type the size of the array must be static and the specified size must be equal to the minimal
aumber of bits needed to represent a value of the type. This calculation takes into account whether or not the
array type is declared with pragma PACK.

If T is a record type the specified size must be greater than or equal to the minimal aumber of bits needed to
represent a value of the type. This calculation takes into account whether or not the record type is declared
with a record represeatation clause.

The effect of a size specification length clause for a type depends oa the context the type is used in.

The allocation of objects of a type is unaffected by a length clause for the type. Objects of a type are allocated
to one or more storage units of memory. The allocation of components in an array type is also unaffected by a
length clause for the component type (unless the array type is declared with pragma PACK); components are
allocated to one or more storage units. The allocation of components in a record type is always unaffected by a
length clause for any component types; components are allocated to one or more storage units, unless a record
representation clause is declared, in which case components are allocated according to the specified component
clauses.

F-12 Appendix F of the Ada Reference Manual

There are two important contexts where it is necessary to use a length clause to achieve a certain representa-
tion. One is with pragma PACK, when component allocations of a non-power-of-two bit size are desired (see
Section F2.8). The other is with unchecked conversion, where a length clause on a type can make that type’s
size equal to another type's, and thus allowed the unchecked conversion to take place (see Section F.9).

Specification of collection size: T'STORAGE _SIZE

This value controls the size of the collection (implemented as a local heap) generated for the given access type.
It must be in the range of the predefined type NATURAL. Space for the collection is deallocated when the
scope of the access type is left.

See the Ada Mips Runtime Executive Programmer’s Guide for full details on how the storage in collections is
managed.

Specification of storage for a task activation: T'STORAGE_SIZE

This value controls the size of the stack allocated for the given task. It must be in the range of the predefined
type NATURAL.

It is also possible to specify, at link time, a default size for all task stacks, that is used if no length clause is
present. See the 4da Mips Runtime Executive Programmer’s Guide for full details, and for a general description
of how task stacks, and other storage associated with tasks, are allocated.
Specification of a small for a fixed point type: T'SMALL

Any real value (less than the specified delta of the fixed point type) may be used.

F.62. Enumeration Representation Clauses

Enumeration representation clauses may only specify representations in the range of the predefined type
INTEGER.

Whesn eaumeration representation clauses are present, the representation values (and not the logical values) are
used for size and allocation purposes. Thus, for example,

type ENUM is (ABLE, BAKER, CHARLIE):
for EMUM use (ABLE => 1, BAKER => 4, CHARLIE = 9):

for ENMUM’'SIZE use 2; -- fllegsl, 1..9 range needs minimm 4 bits
for EMUN/SIZE use 4; -- OX
type ARR s erray (EMUM) of INTEGER; -- will occupy 9 storsge units, not 3

Enumeration representation clauses often lead to less efficient attribute and indexing operations, as noted in
[Ade RM 13.3 (6)].

F43. Record Representation Clauses
Alignment clauses are allowed. The permitted values are 1, 2, and 4.

In terms of allowable component clauses, record components fall into three classes:

Appendix F of the Ada Reference Manual F-13

e integer and enumeration types that may be represented in 32 bits or less;
e statically-bounded arrays or records composed solely of the above;
o all others.

Componeats of the “32-bit integer /enumeration”® class may be given a component clause that specifies a storage
place at any bit offset, and for any sumber of bits, as long as the storage place is greater than or equal to the
minimal size of the componeat type (sec Section F.6.1) and does not cross a word boundary.

Componeats of the “array/record of 32-bit integer/enumeration® class may be given a component clause that
specifics a storage place at any bit offset, if the size of the array/record is less than a word, or at a word offset
otherwise, and for any number of bits, as long as the storage place is large enough to contain the component
and none of the individual integer/enumeration elements of the array/record cross a word boundary. The com-
poneat clause cannot specify a represeatation different from that of the compoaent’s type. Thus, an array com-
poacut that is given a packed representation by a component clause must be of a type that is declared with
pragma PACK; similarly, a record component that is given a non-standard representation by a component
clause must be of a type that is declared with a record representation clause.

Components of the “all others" class may only be given component clauses that specify a storage place at a word
offset, and for the number of bits normally allocated for objects of the underlying base type.

Componeats that do not have component clauses are allocated in storage places beginning at the next word
boundary following the storage place of the last component in the record that has a component clause.

Records with component clauses cannot exceed 1K words (32K bits) in size.

The ordering of bits within storage units is defined to be big-endian. That is, bit 0 is the most significant bit and
bit 31 is the least significant bit. Note that this convention differs from the on= used in [MIPS p. 2-6] for bit-
ordering.

F.7. Implementation-dependent Names for Implementation-dependent Components

None are defined.

F3. Address Clauses

Address clauses are allowed for variables (objects that are not constants), and for interrupt entries. Address
clauses are not allowed for constant objects, or for subprogram, package, or task units.

Address clauses occurring within generic units are always allowed at that point, but are not allowed when the
units are instantiated if they do not conform to the implementation restrictions described here. (Note that the
effect of such address clauses may depend on the context in which they are instantiated; for example, whether
multiple address clauses specifying the same address are erroncous may depend on whether they are instan-
tiated into library packages or subprograms.)

F-14 - Appendix F of the Ada Reference Manual

FA8.1. Address Clauses for Variables
Address clauses for variables must be static expressions of type ADDRESS in package SYSTEM.

It is the user’s responsibility to reserve space at link time for the object. See the Mips Embedded Systems Linker
Reference Manual for the means to do this. Note that to conform with Compiler System assumptions, space so
reserved should begin and end on 16-byte storage boundaries, even if the variable itself is not allocated on a 16-
byte storage boundary. Also note that any bit-addressed object (a packed array or a record with a representa-
tion clause) must be allocated on a fullword (4-byte) boundary.

Type ADDRESS is a 32-bit signed integer. Thus, addresses in the memory range
16#8000_0000#.16#FFFF_FFFF# (i.c., the upper half of target memory) must be supplied as negative
numbers, since the positive (unsigned) interpretations of those addresses are greater than ADDRESS'LAST.
Furthermore, addresses in this range must be declared as named numbers, with the named number (rather than
a negative numeric literal) being used 1n the address clause. The hexadecimal address can be retained in the
named number declaration, and user computation of the negative equivalent avoided, by use of the technique
illustrated in the following example:

X : INTEGER;
for X use at 16#7FFF_FFFF#; - legal

Y : INTEGER;
for Y use at 16#FFFF_FFFF#; - illegal

ADDR_HIGH : constant : = 16#FFFF_FFFF# - 2°°32;
Y : INTEGER;
for Y usc at ADDR_HIGH; -- legal, equivalent to unsigned 16#FFFF_FFFF#

F82. Address Clauses for Interrupt Entr'

Address clauses for interrupt entries do not use target addresses but rather, the values in the target Cause regis-
ter that correspond to particular interrupts. For coavenience these values are defined as named numbers in
package SYSTEM, corresponding to the mnemonics used in {MIPS pp. 54, 5-5]. Note that if the /gisa compile
qualifier is active, indicating that the target is the Westinghouse GISA architecture, an additional set of inter-
rupt vilues is available (see Sections 4.1.1 and F.5).

The following restrictions apply to interrupt eatrics. An interrupt eatry must not have formal parameters.
Direct calls to an interrupt eatry are not allowed. An accept statemeat for an interrupt eatry must not be part of
a selective wait, i.c., must not be part of a select statement. If any exception can be raised from within the accept
statement for an interrupt eatry, the accept statemeat must include an exception handler.

Whea the accept statemeant is encountered, the tagk is suspended. If the specified interrupt occurs, execution of
the accept statement begins. Whea coatrol reaches end of the accept statement, the special interrupt eatry pro-
cessing ends, and the task coatinues normal execution. Coatrol must again return to the point where the accept
statemeant is encountered in order for the task to be suspended again, awaiting the interrupt.

There are many more details of bow interrupt eatries interact with the target machine state and with the Run-
time Executive. For these details, see the Ada Mips Runtime Executive Programmer’s Guide.

Appendix F of the Ada Reference Manual F-15

F9. Unchecked Conversion
Unchecked type conversions are allowed and supported by the compiler.

Unchecked conversion is only allowed between types that have the same size. In this context, the size of a type
is the minimal size (see Section F.6.1), unless the type has been declared with a size specification leagth clause,
in which case the size 5o specificd is the size of the type.

In addition, if UNCHECKED_CONVERSION is instantiated with an array type, that array type must be stati-
cally constrained.

In general, unchecked coaversion operates on the data for a value, and not on type descriptors or other
compiler-generated entities.

For values of scalar types, array types, and record types, the data is that normally expected for the object. Note
that objects of record types may be represented in two ways that might not be anticipated: there are compiler-
generated extra components representing array type descriptors for each component that is a discriminant-
dependent array, and all dynamically-size array components (whether discriminant-dependent or not) are
represented indirectly in the record object, with the actual array data in the system heap.

For values of an access type, the data is the address of the designated object; thus, unchecked conversion may
be done in ecither direction between access types and type SYSTEM.ADDRESS (which is derived from type
INTEGER). (The only exception is that access objects of unconstrained access types which designate uncon-
strained array types cannot reliably be used in unchecked coaversions.) The named number
SYSTEMADDRESS_NULL supplies the type ADDRESS equivalent of the access type literal aull. Note bow-
ever that due to compiler assumptions about the machine alignment properties of objects, unchecked conver-
sions from SYSTEM.ADDRESS (o access objects must be done on 4-byte (word) aligned addresses only.

For values of a task type, the data is the address of the task’s Task Control Block (see the Ada Mips Runtime
Executive Programmer’s Guide).

For unchecked conversions involving types with a size less than a full word of memory, and different representa-
tional adjustment within the word (scalar types are right-adjusted within a word, while composite types are left-
adjusted within a word), the compiler will correctly re-adjust the data as part of the conversion operation.

Some examples to illustrate all of this:

type BOOL_ARR {s erray(1..32) of SOOLEAN;
pregms PACK (BOOL_ARR);

function UC s new UNCNECKED_CONVERSION (BOOL_ARR, INTEGER); -- OK, both have size 32

typs B178_8 is arrey(1..8) of BOOLEAN;
progms PACK (BITS_8);

function UC is new UNCNECKED_CONVERSION (BITS_8, INTEGER); -- fllegsl, sizes are 8 and 32

typs SWLL_INT is renge -128..127;
function UC {s new UNCHNECKED _COMVERSION (BITS_8, SMALL_INT); --0K, both have size 8

type SYTE is renge 0..255;
function UC is new UNCHECKED_CONVERSIOMN (B1TS_8, SYTE); --OK, both have size 8

type S1G_BOOLEAN is new BOOLEAN;
for BIG_SCOLEAN’SIZE use 8;
function UC is new UNCHECKED_CONVERSION (B17S_8, BIG_BOOLEAN); --OK, both have size 8

F-16 Appendix F of the Ada Reference Manual

$M : SMALL_INT; -- sctual data is rightmost byte in object’s word
81 : BIT1S_S; -- sctual data is leftmost byte in object’s word

Q':-.m.(ll);' == sctual dats is moved from Leftmost to rightmost byte as pert of conversion
Calls to instantiations of UNCHECKED_CONVERSION are always generated as inline calls by the compiler.
The instantiation of UNCHECKED _CONVERSION as a library unit is not allowed. Instantiations of
UNCHECKED_CONVERSION may not be used as generic actual parameters.

F.10. Other Chapter 13 Areas

F.10.1. Change of Representation

Change of representation is allowed and supported by the compiler.

F.102. Representation Attributes
All representation attributes [4da RM 13.7.2, 13.7.3] are allowed and supported by the compiler.

For certain usages of the X’ADDRESS attribute, the resulting address is ill-defined. These usages are: the
address of a constant scalar object with a static initial value (which is not located in memory), the address of a
loop parameter (which is not located in memory), and the address of an inlined subprogram (which is not
uniquely located in memory). In all such cases the value SYSTEM.ADDRESS_NULL is returned by the attri-
bute, and a warning message is issued by the compiler.

Whea the X’ADDRESS attribute is used for a package, the resulting address of that of the machine code asso-
ciated with the package specification.

The X’SIZE attribute, when applied to a type, returns the minimum size for that type. See Section F.6.1 for a
full definition of this size. However, if the type is declared with a size specification length clause, then the size
so specified is returned by the attribute.

Since objects may be allocated in more space than the minimum required for a type (see Section F.6.1), but not
less, the relationship O’SIZE > = T°SIZE is always true, where O is an object of type T.

F.103. Machise Code Insertions

Machine code insertions are not allowed by the compiler. Note that pragma INTERFACE (ASSEMBLY) may
be used as a (noo-inline) alteraative to machine code insertions.

F.104. Unchecked Deallocation

Unchecked storage deallocation is allowed and supported by the compiler.

Calls to instantiations of UNCHECKED_DEALLOCATION are always generated as inline calls by the com-
piler.

Appendix F of the Ada Reference Manual F-17

The instantiation of UNCHECKED DEALLOCATION as a library unit is not allowed. Instantiations of
UNCHECKED_DEALLOCATION may not be used as generic actual parameters.

F.11. Input-Output

The predefined library generic packages and packages SEQUENTIAL IO, DIRECT IO, and TEXT IO are
supplied. However, file input-output is not supported except for the ‘standard input and output files. Any
attempt to create or open a file will result in USE_ERROR being raised.

TEXT_IO opeunons to the standard input and output files are implemented as input from or output to some
visible device for a given Mips R2000/R3000 target implemeniation. Depending on the implementation, this
mybenconsolc,aworksuuoadxskdnve,nmuhtorﬁles.etc.SeetheAdaMpsRunameﬁecuave
Programmer’s Guide for more details. Note that by default, the standard input file is empty.

The range of the type COUNT defined in TEXT_IO and DIRECT 10 is 0..SYSTEM.MAX INT.
The predefined library package LOW_LEVEL IO is empty.

In addition to the predefined library units, a package STRING_OUTPUT is also included in the predefined
library. This package supplics a very small subset of TEXT_IO operations to the device connected to the stan-
dard output file. (It does not use the actual standard output file object of TEXT _IO, so TEXT_IO state func-
tions such as COL, LINE, and PAGE are unaffected by use of this package).

The specification of STRING_OUTPUT is:

package STRING_QUTPUT is
procedure PUT (ITEM : in STRING);
procedure PUT_LINE (ITEM : in STRING);
procedure NEW_LINE;

ond STRING_OUTPUT;

By using the 'TMAGE attribute function for integer and eaumeration types, a fair amount of output can be done
using this package instead of TEXT_IO. The advantage of this is that STRING_OUTPUT is smaller than
TEXT_IO in terms of object code size, and faster in terms of execution speed.

Use of TEXT_IO in multiprogramming situations (sec Chapter 5) may result in unexpected exceptions being
raised, due to the shared unit semantics of multiprogramming. In such cases STRING_OUTPUT may be used
instead.

F-18

Appendix F of the Ada Reference Manual

F.12. Compliler System Capacity Limitations

The following capacity limitations apply to Ada programs in the Compiler System:

the names of all identifiers, including compilation units, may not exceed the number of characters
specified by the INPUT_LINELENGTH compoaent in the compiler configuration file (see Section
4.14);

a sublibrary can contain at most 4096 compilation units (library units or subunits). A program library
can contain at most cight levels of sublibraries, but there is no limit to the number of sublibraries at
cach level. An Ada program can contain at most 32768 compilation units.

The above limitations arc all diagnosed by the compiler. Most may be circumvented straightforwardly by using
scparate compilation facilities.

F.13. Implementation-dependent Predefined Library Units

In addition to the predefined library units required by [4da RM Annex C], the predefined library in the Com-
piler System is delivered with several other library units that application developers may be interested in. These

are:

package STRING_OUTPUT, described in Section F.11 above

a number of packages coastituting the Application Runtime Interfaces, which allow for applications to
access or control ruai.ic evecutive functions in ways that are in addition to, or an alternate to, stan-
dard Ada language features.

generic package GENERIC MATH_FUNCTIONS. This is a public domain math package, taken
from the Ada Software Repository, based on the algorithms of Cody and Waite. It supplies a set of
clementary mathematics functions. The source for both the specification and the body of the package
can be extracted from the predefined library through the Ada PLU type command.

In addition to these units, there are also a number of units in the predefined library that are used as part of the
runtime system itself. These are “called” by the code generated by the compiler, and are not intended for direct
use by application developers.

